A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication
نویسندگان
چکیده
Through the use of a multi-layer phase mask to produce fivebeam interference, three-dimensional photonic crystals can be formed through single exposure to a photoresist. In these holographically formed structures, the interconnectivity is controlled by the relative phase difference among contributing beams. Photonic band gaps are calculated and the simulation shows a maximum bandgap of 18% of the middle gap frequency when the phase difference is optimized. A three-layer phase mask is fabricated by placing a spacer layer between two orthogonally-orientated gratings. The phase difference is controlled by thermal-tuning of the spacer thickness. Photonic crystal templates are holographically fabricated in a photosensitive polymer using the phase mask. ©2011 Optical Society of America OCIS codes: (160.5293) Photonic bandgap materials; (050.6875) Three-dimensional fabrication. References and links 1. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of twodimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001). 2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). 3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994). 4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). 5. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004). 6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000). 7. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic threedimensional structures by multibeam interference of visible laser,” Chem. Mater. 14(7), 2831–2833 (2002). 8. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046610 (2006). 9. O. Toader, T. Y. M. Chan, and S. John, “Diamond photonic band gap synthesis by umbrella holographic lithography,” Appl. Phys. Lett. 89(10), 101117 (2006). 10. Y. Zhong, L. Wu, H. Su, K. S. Wong, and H. Wang, “Fabrication of photonic crystals with tunable surface orientation by holographic lithography,” Opt. Express 14(15), 6837–6843 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6837. 11. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9113–9119 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe14-20-9113. 12. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett. 86(7), 071117 (2005). 13. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, “Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal,” Opt. Express 16(12), 9165–9172 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9165. #148825 $15.00 USD Received 7 Jun 2011; revised 17 Aug 2011; accepted 21 Aug 2011; published 24 Aug 2011 (C) 2011 OSA 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 1034 14. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express 16(20), 15402–15414 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-20-15402. 15. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94(23), 231116 (2009). 16. G. Y. Dong, L. Z. Cai, X. L. Yang, X. X. Shen, X. F. Meng, X. F. Xu, and Y. R. Wang, “Holographic design and band gap evolution of photonic crystals formed with five-beam symmetric umbrella configuration,” Opt. Express 14(18), 8096–8102 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-18-8096. 17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-83-173. 18. Y. Lin, D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express 14(2), 887–892 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-887.
منابع مشابه
Holographic fabrication of 3D photonic crystals using silicon based reflective optics element
We present a silicon based single optical element that is able to automatically generate desired laser beam polarizations and intensities for the holographic fabrication of woodpile-type photonic crystal templates. A polydimethylsiloxane (PDMS) mold based reflective optics element is fabricated for the generation of five-beam interferences where four beams are arranged four-fold symmetrically a...
متن کاملFive beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four firs...
متن کاملFabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal.
In this paper, we report a new design and fabrication of an integrated two-layer phase mask for five-beam holographic fabrication of three-dimensional photonic crystal templates. The phase mask consists of two layers of orthogonally oriented gratings produced in a polymer. The vertical spatial separation between two layers produces a phase shift among diffractive laser beams, which enables the ...
متن کاملHolographic fabrication of photonic crystals using multidimensional phase masks
This paper reports the experimental approaches to the fabrication of two-layer integrated phase masks and the fabrication of photonic crystal templates using the phase mask based on holographic lithography technique. The photonic crystal template is formed by exposing photoresist mixtures to five-beam interference patterns generated through the phase mask. The fabricated phase mask consists of ...
متن کاملFlexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element
In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D) structures using a single 3D printed reflective optical element (ROE), taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both sand p-polarized beams for the interference. The wide selection of reflective surface m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011